
Optimal Transport For Causal Discovery

This is a summary of the paper Optimal Transport For Causal Discovery (Tu et al., 2022).

1 Problem Setup

observed 
𝐱" ∈ ℝ%

unobserved 
𝐱& ∈ ℝ%

𝑀

density 𝑝& ≥ 0 density 𝑝+ ≥ 0

The observed data points xT = [X,Y ] at a certain time T are viewed as the product of the
dynamic transfer from an unmeasured independent noise x0 = [Ex, Ey] at time 0. Let’s
consider a bi-variate case where X is a cause of Y i.e., X → Y with a Functional Causal
Model (FCM): Y = f(X,Ey).

Given x0,xT ∈ R2 and the probability densities p0, pT ≥ 0, the mass transfer scenario
realized under the existence of a map M : R2 7→ R2 can be described as

xT =

[
X
Y

]
=

[
Ex

f(X,Ey)

]
= M

([
Ex

Ey

])
= M(x0)

From the perspective of FCM-based causal discovery approaches, causal influences are
represented by FCMs which represent the effect as a function of its direct cause and an
unmeasured noise satisfying the FCM constraints:

1. The map constraint: the values ofX are determined by the values of its corresponding
noise, i.e., X = Ex. while the values of the effect depend on cause X and noise Ey;
for the initial and final values of the cause, the value of its observation X is equal to
its noise value Ex.

2. The independence constraint: : two random variables (cause and effect) at the initial
time have the joint probability density function p0(x0) and independent, i.e., Ex is
independent of Ey.

In the remainder, we will see how this dynamical view gives rise to a property unique to the
mechanism X is a cause of Y and vice versa, the directionality X → Y is identifiable if such
a condition holds.

2 Characterization of Optimal Map

We first examine the optimality of M under FCM-based causal discovery constraints. The
optimal transport M∗ is the minimizer of the dynamical L2 Wasserstein distance W 2

2 .

Benamou & Brenier (2000) formulate the L2 Monge-Kantorovich problem as a convex
space-time minimization problem in a continuum mechanics framework.

Proposition 1. Given a fixed time interval [0, T ], the motions of particles are described
with the density ρt := ρ(t,xt) ≥ 0 and the velocity field vt := v(t,xt), the dynamical
formulation of W 2

2 is given as

W 2
2 = inf

ρ,v
T

∫
R2

∫ T

0

ρ(t,xt)|v(t,xt)|2dxtdt (1)
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such that the following conditions are satisfied

{
initial and final conditions: ρ(0, ·) = p0, ρ(T, ·) = pT
the continuity equation: ∂tρt +∇ · (ρtvt) = 0

where ∇· is the divergence in vector calculus. Recall that the divergence of a 3−dimensional
vector field v, for example, is given as

∇ · v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

where vx,vy,vz are components of v along the x, y, z axes.

At some point (a, b), the divergence ∇ · v(a, b) < 0 means the fluid flowing along the vector
field defined by x would tend to become more dense at the point (a, b). If the divergence
∇ · v(a, b) > 0, the fluid flowing along the vector field becomes less dense around (a, b).
The zero divergence ∇ · v(a, b) = 0 indicates that even though a fluid flows freely, its density
stays constant.

Suppose M∗ is the solution given by the minimization of W 2
2 , the corresponding flows follow

the time evolution equation with t ∈ [0, T ]

xt = x0 +
t

t
v(t,xt), v(t,xt) = v(0,x0) = M∗(x0)− x0 (2)

The time evolution equation shows that xt is a convex combination of x0 and M∗(x0) and
that the velocity fields do not depend on time. Such optimal flows are pressureless potential
flows of which the fluid particles are not subject to any pressure or force and the trajectories
are determined given their initial positions and velocities or given their initial and final
positions. The density ρ and the velocity v of moving particles can be considered as the
probability density and the velocity of changing values of data points.

Proof. We assume ρ0 and ρT to be compactly supported in Rd and bounded. The framework
of the Monge-Kantorovich problem assumes both density functions are bounded with total
mass one ∫

Rd

ρT (x)dx =

∫
Rd

ρ0(x)dx = 1

We say that a map M from Rd to Rd realizes the transfer of ρ0 to ρT if, for all bounded
subset A ⊂ Rd ∫

x∈A

ρT (x)dx =

∫
M(x)∈A

ρ0(x)dx (3)

Let us consider (sufficiently smooth) fields ρ and v satisfying the initial/final conditions and
the continuity equation. We use Lagrangian coordinates and define location X(t, x) by

X(0,x) = x0, ∂tX(t,x) = v(t,X(t,x)),

such that, for all test functions f ,

∫
Rd

f(t,x)ρ(t,x)dxdt =

∫
Rd

f(t,X(t,x))ρ0(x)dxdt (4)
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Note that Eq. (4) implies that Eq. (3) holds i.e., a valid OT problem. For t ∈ [0, T ], we have

T

∫
Rd

∫ T

0

ρ(t,xt)|v(t,xt)|2dxtdt = T

∫
Rd

∫ T

0

ρ0(x0)|v(t,X(t,x)|2dx0dt

= T

∫
Rd

∫ T

0

ρ0(x0)|∂tX(t,x)|2dx0dt

(by Jensen’s inequality) ≥
∫
Rd

ρ0(x0)

(∫ T

0

|∂tX(t,x)|
)2

dtdx0

=

∫
Rd

ρ0(x0)|X(T,x)−X(0,x)|2dx0

=

∫
Rd

ρ0(x0)|X(T,x)− x0|2dx0

=

∫
Rd

ρ0(x0)|xT − x0|2dx0

(M∗ is optimal) ≥
∫
Rd

ρ0(x0)|M∗(x0)− x0|2dx0

By definition, the Lp Wasserstein distance between p0 and pT takes the form of Wp(p0, pT )
p =

infM
∫
|M(x0)− x0|pp0(x0)dx0. This indirectly completes the proof for Proposition 1.

Finding the optimal map M in the original OT problem is equivalent to finding the optimal
(ρt,vt) in continuum mechanics. At optimality, the choice of X(t,x) at t = T must satisfy

X(T,x)− x0 = M∗(x0)− x0

The appropriately optimal choice for X(t,x) is

X(t,x)− x0 =
t

T

(
M∗(x0)− x0

)
This gives rise to

xt = x0 +
t

T

(
xT − x0

)
= x0 +

t

T

(
M∗(x0)− x0

)
We can also observe that

xt − x0

t
= v(t,xt) =

M∗(x0)− x0

T

This proves the time evolution equation given in (2).

3 Optimal map under FCM constraints

Given the couplings x0,xT , note that the optimal transport M∗ is not necessary to be the
one generated from the ground-truth FCM. Yet, under FCM constraints, the form of M∗ is
determined to be

M∗(x0) =

[
Ex

f(Ex, Ey)

]
Proposition 2. Under FCM constraints, the square of L2 Wasserstein distance between
p0 and pT is

W 2
2 (p0, pT ) = EEx

[
W 2

2

(
p(Ey), p(Y |Ex)

)]
(5)

Proof. Recall that the Lp Wasserstein distance between p0 and pT is defined by Wp(p0, pT )
p =

infM
∫
|M(x0)− x0|pp0(x0)dx0. Given optimal map M∗,
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W 2
2 (p0, pT ) =

∫
|M∗(x0)− x0|2p0(x0)dx0

=

∫
Ex

∫
Ey

f
(
Ex, Ey)− Ey

)2
p(Ey)dEyp(Ex)dEx

= EEx

[
W 2

2

(
p(Ey), p(Y |Ex)

)]
The derivation at the second line is due the independence of Ex and Ey. Note also that X
remains at Ex throughout the process, so the distance along X-axis is zero.

4 Causal Direction Determination

We call an FCM an Additive Noise Model (ANM) if the effect is the sum of noise and a
nonlinear function g of cause i.e., the structural assignments are of the form

Y := g(X) + Ey

Theorem 1. (Zero divergence of the velocity field) Under FCM constraints, the dynamical
systems given by the L2 Wasserstein distance are pressureless flows. Further under ANM
constraint, they become volumne-preserving pressureless flows, of which the divergence of
the velocity field, v(t,xt) =

[
vx(t, xt), vy(t, yt)

]
, satisfies

∇ · v(t,xt) =
∂vx(t, xt)

∂xt

+
∂vy (t, yt)

∂yt

= 0 ∀t ∈ [0, T ], xt, yy ∈ R (6)

See Appendix D.3 in the paper for proof.

Proposition 3. (Divergence measure as a causal discovery criterion) Define the divergence
measure as

D(v) =

∫
R2

|∇ · v|2p0(x)dx0 = Ex0

[
|∇ · v|2

]
(7)

where v = M∗(x0)− x0. Suppose that the FCM and ANM constraints and identifiability
conditions of ANMs are satisfied. The divergence measure of the corresponding dynamical
system satisfies D(v) = 0 if and only if X is the direct cause of Y .

See Appendix D.4 in the paper for proof.

5 The Algorithm

Given a set of observed data points of 2 variables X,Y , Proposition 7 suggests computing
the expected divergence measure to infer whether X → Y or Y → X. The method makes
standard assumptions of Markov property, faithfulness and no latent confounding.

Step 1. Noise data generation: The first step is to generate data for x0. Since X is
unchanged, we only need to assume the probability distribution of Ey and parameterize it
with θ.

Suppose the dataset of xT with N samples is given, denoted as
{(

xi, yi
)}

N
. A dataset of

Ey with the sample size N :
{
eiy
}
N

is generated with the following reparameterization trick

eiy = fnoise
θ

(
esourcey

)
= θ × esourcey ∼ N (0, 1)/U(0, 1)

where fnoise
θ a monotonic function parameterized by a neural network and esourcey is sampled

from a standard normal or uniform distribution. We randomly match the noise data
{
eiy
}
N

with the data of X:
{
xi
}
N
, which gives x0 :=

{(
xi, eiy

)}
N
.
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Step 2. Couplings matching: To compute the divergence measure, we need to compute
the velocity field v = M∗(x0) − x0, which requires the appropriate couplings x0 and xT .
Therefore, we now solve the classic matching problem by minimizing W 2

2 given in Eq. (5)
which can be computing with Monte Carlo estimator.

Under the FCM constraints, only the y-coordinates need matching. Thus, the optimal
transport problem is reduced to one-dimensional, which can be implemented with a sorting
operation (Kolouri et al., 2019).

Step 2 yields the optimal map M∗ and matching tuples
(
x0;xT

)
:=

{(
xi, eiy

)
;
(
xi, yi

)}
N
.

Step 3. Variance-based Divergence Measure We now compute the divergence measure.
The velocity field is given as

v = M∗(x0)− x0 = xT − x0 =

[
X
Y

]
−

[
Ex

Ey

]
=

[
0

Y − Ey

]

Thus, |∇v|2 =
(dvy

dy

)2
. A straightforward way to approximate the derivative is using its

nearest neighbour pair
(
eixb, e

i
yb

)
and

(
xbi, ybi

)
and approximate it with

d

dy

(
vy
)
|y=yi =

(yi − eiy)− (ybi − eiyb)

yi − ybi

However in practice, the authors find that such approximation introduces several numerical
issues:

• the denominator is in general a small number, and the distance to the nearest
neighbour can be large in the few-sample case, which makes the computation
unstable and inaccurate

• the deviation on the X-axis makes the approximation a biased estimate especially
when the gradient of g(X) + Ey at X = x is large.

Therefore, they proposed the variance-based divergence measure, which is defined as

Dvar(v) = EX

[
V[Vy|X |X]

]
(8)

where V[Vy|X |X] represents a conditional variance of the velocity field Vy at position X at
the initial time.

Since the velocity along the X-axis is zero, under all above constraints, the value of the
divergence measure of an ANM is zero if and only if the value of the variance-based divergence
measure is zero. The velocity field Vy is a random variable and computing the conditional
variance simply involves computing the variance over velocities viy among pairs with the

same value of xi.

Formally, let
{
viy|x

}
Nx

denote all the velocities viy at position X = x at the initial time,

where the sample size is Nx and the mean value is v̄y|x.

V[Vy|X |X = x] =

Nx∑
i=1

(
viy|x − v̄y|x

)2
/
(
Nx − 1

)
The variance-based divergence measure is computed as

Dvar(v) ≈
1

N

∑
x∈{xi}N

∥sort(−→yx)− sort(−→ey)− ave(−→yx −−→ey)∥22
Nx − 1

where −→yx is the vector of the Y samples where X = x; −→ey is the vector of the Ey samples
where Ex = x; sort

(
·
)
sorts a vector; ave

(
·
)
computes the vector mean; and ∥ · ∥22 is the

square of a l2 norm.
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Step 4. Fitting the noise distribution: We only initialize θ with some random value,
and p(Ey; θ) is not necessary to be the true distribution or even significantly different from
the true one, which can lead to the wrong result of the divergence measure. We therefore
minimize the divergence measure w.r.t θ. Meanwhile, the divergence measure in the causal
direction is zero if and only if p(Ey; θ

∗) with the optimal parameters θ∗ being the true noise
distribution, implied by the identifiability of ANMs.

6 Extension to Multivariate case

In the case of multiple variables, one can use a constraint-based method to find the causal
skeleton (the undirected causal graph) and then use the extension of the method for the
edge orientation.

Suppose the general ANM is Xi = gi(Pai) +Ei where i = 1, ..., d, Ei is the noise term of Xi

and Pai denotes the parent variables of Xi. The square of L2 Wasserstein distance is

W 2
2

(
p0, pT

)
=

m∑
i=1

EPai

[
W 2

2

(
p(Ei), p(Xi|Pai

)]
Given the couplings of Ei and Xi, the corresponding dynamical system has zero divergence
of its velocity field; the corresponding dynamical system which moves the samples of x0 to
the samples of xT under ANM constraints has zero divergence on each dimension.

Dvar(v) ≈
m∑
i=1

1

N

∑
k∈{samples of Pai}N

∥sort(−−−−−→xi|Pai=k)− sort(−→ei )− ave(−−−−−→xi|Pai=k −−→
i )∥22

Nk − 1

One could enumerate all possible DAGs of the causal skeleton and compute their measure
values, of which the minimum value is corresponding to the causal graph.

Because the causal skeleton is given, it must be the case where one of the two variables of
an edge is the cause and the other one is the effect. So the enumerated graphs have two
situations:

1. all the edges are correctly oriented;

2. the causal direction of at least one edge is wrong such that the measure value of
at least one causal module is significantly larger than the correct one (note that
considering a child as the direct cause leads to increasing the measure value, while
omitting a cause is not necessary to increase the measure value of the causal module).

Thus, we can simply choose the graph with the minimum measure value as the causal one.
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