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Abstract

Learning DAG structures from purely observa-
tional data is a long-standing challenge, though
significant progress has been made in recent years.
An emerging line of research leverages the score
of the data function to identify a topological order
of the underlying DAG and ultimately perform
causal discovery as combined with edge prun-
ing algorithms. This paper extends the original
score matching framework for causal discovery,
which is originally designated for continuous data,
and introduces a novel leaf discriminant criterion
based on the discrete score function. Through
simulated and real-world experiments, we demon-
strate that our theory enables accurate inference
of true causal orders from observed discrete data
and that our identified ordering can significantly
boost the accuracy of existing causal discovery
baselines.

1. Introduction
Discovering the causal structure, often a directed acyclic
graph (DAG), within a system of variables has long been
an active pursuit across diverse scientific fields (Sachs et al.,
2005; Richens et al., 2020; Wang et al., 2020). This paper fo-
cuses on causal discovery from observational data, a central
problem in causality that presents two key challenges.

First, identifiability remains a major issue: multiple causal
models can generate the same observational data distribu-
tion. To this end, certain assumptions on the data generative
process are required to ensure the causal model is identifi-
able from purely observed data (Peters et al., 2010; 2014).

Second, structure learning is computationally intractable
in the general case, as searching over the combinatorial
space of DAGs is known to be NP-hard (Chickering, 1996;
Chickering et al., 2004). An important fact one can possibly

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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exploits is that any DAG has at least one topological order
and the ordering exists if and only if it is a DAG. The prior
knowledge of partial orderings is typically available in some
real-world scenarios, such as genetics (Olson, 2006), health-
care (Denton et al., 2007) or meteorology (Bruffaerts et al.,
2018). Incorporating such prior information can signifi-
cantly reduces the complexity of DAG search since acyclic-
ity constraint is naturally enforced given a causal order (Ban
et al., 2024).

Ordering-based causal discovery is a line of research that
addresses the case where partial orderings are not given
(Teyssier & Koller, 2012; Bühlmann et al., 2014). The algo-
rithm entails into two stages: (1) determining a topological
ordering and (2) subsequent post-processing to remove spu-
rious edges. Research in ordering-based causal discovery
recently takes off with the use of score matching (Rolland
et al., 2022; Sanchez et al., 2022; Montagna et al., 2023b;a;
Xu et al., 2024), wherein a valid causal order can be esti-
mated by sequentially identifying the leaf nodes based on
the score of data distribution. The approach has proven
practically effective and offers some robustness to noise
misspecifications or to assumptions violations such as faith-
fulness and measurement errors (Montagna et al., 2024).

Despite their successes, ordering-based causal discovery
frameworks with score matching are currently limited to
continuous data. Extending the methods to discrete data
remains a largely unexplored area. The core difficulty lies in
the fact that the concept of a “score function” (i.e., Jacobian
of the data log-likelihood) is not well-defined for discrete
random variables. Our work is motivated by a fundamental
question: can the score matching paradigm be applied
for recovering a causal order from discrete data? Given
the growing literature on surrogate “scores” for discrete data
(Hyvärinen, 2007; Lyu, 2012; Meng et al., 2022; Sun et al.,
2022), we investigate whether any of the proposed discrete
score functions can effectively serve as a leaf node discrimi-
nant criterion. It turns out the answer is affirmative, and we
further develop an identifiability result that guarantees the
recovery of causal orders from observational discrete data.

Contributions In summary, our work presents the follow-
ing contributions:

• We characterize the identifiability of a topological or-
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Ordering-based Causal Discovery from Discrete Data

der underlying a discrete structural causal model and
demonstrate how it can be estimated based on the dis-
crete score of data distribution (see §3.3).

• Our theoretical results shed light on a novel connection
of causal discovery with majorization theory (Marshall
et al., 1979; Hickey, 1982; 1983) for quantifying the
randomness of a system. While making no assump-
tions about the additive structure, our theory gives rise
to a condition that generalizes existing sufficient con-
ditions for identification of leaf node in non-linear and
linear Gaussian additive models.

• We enrich the ordering-based literature with an exten-
sion to discrete data, while provide a fresh view to
learning structures from discrete data, which is cur-
rently dominated by classical independence test-based
and score-and-search approaches.

• Lastly, we validate our theory through synthetic and
real-world experiments, demonstrating empirical ef-
fectiveness in recovering true causal orders, ultimately
yielding a significant boost in the accuracy of the in-
ferred causal structures.

2. Related Work
Causal discovery algorithms broadly fall into two categories:
constraint-based methods, such as PC (Spirtes & Glymour,
1991) and FCI (Spirtes et al., 2000), which detect edge exis-
tence and direction by conditional independence tests; and
score-based1 methods that search for DAGs that optimizes a
given objective/loss function function (Ott & Miyano, 2003;
Chickering, 2002; Teyssier & Koller, 2012; Cussens et al.,
2017). Research on continuous data particularly enjoys
remarkable progress over the years, driven by the devel-
opment of non-convex characterization of the acyclicity
constraints. This gives rise to a family of scalable DAG
learning frameworks via continuous optimization programs,
notably Lachapelle et al. (2019); Zheng et al. (2020); Yu
et al. (2019); Bello et al. (2022). We refer readers to Gly-
mour et al. (2019); Vowels et al. (2022); Kitson et al. (2023)
for excellent reviews of the related methods. In the follow-
ing, we focus on ordering-based algorithms and structure
learning approaches for discrete observational data.

Ordering-based Causal Discovery This family of meth-
ods often assume the (continuous) observational data is
generated from an additive noise model. They first estimate
a topological ordering of the causal variables, and prune the
resulting fully connected DAG by some variable selection

1The term score in traditional causality literature refers to an
objective of a DAG optimization problem. This is to distinguish
with the score of data distribution ∇ log p(x) in score matching
literature.

procedure. CAM (Bühlmann et al., 2014) is an early order-
based approach; CAM uses a greedy search to determine
the topological ordering and rely on significance tests to
prune the DAG. Ghoshal & Honorio (2018) and Chen et al.
(2019) infer the causal graph of linear additive modes, by
sequentially identifying leaf nodes based on an estimation
of the precision matrix. In the same spirit, Rolland et al.
(2022) tackles non-linear Gaussian models and proposes to
identify the leaf node by the Hessian matrix of the data log-
likelihood. This method offers several advantages such as
robustness to assumption violations (Montagna et al., 2024)
or scalability in high-dimensional graphs (Montagna et al.,
2023c). Additionally, it provides guarantees on finite sample
complexity bounds (Zhu et al., 2024), further enhancing its
appeal for practical applications. Several extensions to han-
dle arbitrary continuous noise settings have recently been
developed, including Sanchez et al. (2022); Montagna et al.
(2023a;b;c); Xu et al. (2024).

Causal Discovery from Discrete Data Constraint-based
causal discovery can be extended to discrete data with
G-tests (Quine & Robinson, 1985) or chi-squared tests
(Cochran, 1952). Score-based methods, such as GES (Chick-
ering, 2002; Teyssier & Koller, 2012), can be applied on
multinomial Bayesian networks with BIC (Schwarz, 1978)
or BDeu (Heckerman et al., 1995) scoring functions. How-
ever, it is well-known that graphs are generally identifiable
up to the Markov equivalence class. To this end, several
identifiability results have been proposed, under specific
assumptions, for nominal/categorical data (Peters et al.,
2010; Liu & Chan, 2016; Cai et al., 2018; Compton et al.,
2020; Qiao et al., 2021), ordinal data (Luo et al., 2021;
Ni & Mallick, 2022), or mixed data (Tsagris et al., 2018;
Sedgewick et al., 2019; Wenjuan et al., 2018). The vast ma-
jority of these existing methods are designed for bivariate
settings. Algorithmically, these approaches typically resort
to constraint-based or score-based algorithms to search for
the true graphs.

Score Matching Score matching is a family of parameter
learning methods alternative to the maximum likelihood
principle. The objective entails matching two log probabil-
ity density functions by their first-order derivatives using
the Fisher divergence metric. First introduced in (Hyvärinen
& Dayan, 2005), score matching obviates the intractability
of the normalizing partition functions as well as the ground-
truth data score. and leads to a consistent estimate. Further
developments in score estimation include kernel-based es-
timators (Li & Turner, 2017), denoising score matching
(Vincent, 2011), slice score matching (Song et al., 2020),
denoising likelihood score matching (Chao et al., 2022), and
score-based generative modelling (Song & Ermon, 2019).
In these line, the score function is learned by fitting a neural
network minimizing the empirical Fisher divergence.
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Ordering-based Causal Discovery from Discrete Data

Whereas representing a probability distribution by the score
of its density has proven effective for continuous data, the
notion of gradient is not defined for discrete modalities, ren-
dering score matching inapplicable. To this end, a popular
surrogacy of the typical score function is what is known as
the concrete score (Meng et al., 2022), that is the ratio of two
marginal probabilities for different state-value pairs p(y)

p(x) .
Analogous to the score function∇ log p(x), this ratio arises
in the reverse process for discrete diffusion models, where
the evolution of discrete variables is described through a
continuous-time Markov chain (Anderson, 2012; Campbell
et al., 2022; Sun et al., 2022; Lou et al., 2024), leading to a
natural realization of score matching in discrete domains.

In this paper, we focus on categorical score estimation by
matching marginal probabilities for each dimension. This
approach, called ratio matching, is initially proposed by
Hyvärinen (2007) for binary data, where it also preserves
consistency (under some regularity conditions) and bypasses
the computation of normalizing constant. Extensions to
general discrete data are developed in Lyu (2012); Sun et al.
(2022). We summarize the technicalities in §3.3.

3. Preliminaries
Notation We use upper case letters (e.g., X) for random
variables and lower case letters (e.g., x) for values. We
reserve bold capital letters (e.g., G) for notations related to
graphs and calligraphic letters (e.g., X ) for spaces. Finally,
we use [d] to denote a set of integers {1, 2, · · · , d}.

This work deals with discrete random variables X of finite
domain where each variable Xi has ni states (ni ≥ 2) and
its domain is [ni]. Let X :=

∏d
i=1[ni] denote the domain

of X and p(x) be the joint probability density function.

3.1. Structural Causal Model

A directed graph G = (V,E) consists of a set of nodes
V and an edge set E ⊆ V2 of ordered pairs of nodes with
(v, v) /∈ E for any v ∈ V (one without self-loops). For a
pair of nodes i, j with (i, j) ∈ E, there is an arrow pointing
from i to j and we write i → j. Two nodes i and j are
adjacent if either (i, j) ∈ E or (j, i) ∈ E. If there is an
arrow from i to j then i is a parent of j and j is a child of
i. Let pai and chi denote the set of variables respectively
associated with parents and children of node i in G.

The data generative process for a set of random variables
X = {Xi}i∈[d] is characterized via a structural causal
model (SCM, Pearl, 2009) over the tuple ⟨U,X, f⟩ that
generally consists of a sets of assignments

Xi := fi
(
Xpai , ϵi

)
, i ∈ [d], (1)

where {ϵ1, · · · , ϵd} are mutually independent exogenous

variables with strictly positive density. Given a joint distri-
bution over the exogenous variables ϵ, the (deterministic)
functions f = [fi]i∈[d] define a joint distribution PX over
the endogenous variables X . An SCM induces a causal
graph G, which is often assumed to be a DAG. An im-
portant property of DAGs is that there exists a non-unique
topological ordering π = (π1, · · · , πd) that represents di-
rections of edges such that i comes before j in the ordering
for every directed edge (i, j) ∈ E, written as πi < πj if
(i, j) ∈ E where πi, πj denote the positions of nodes i and
j in the ordering.

In this work, we make standard causal discovery assump-
tions: (1) the distribution PX and the induced graph G
satisfies Markov properties (Pearl, 2009) and (2) there are
no latent confounders of the observed variables. This model
allows the probability density of X to be factorized as:

p(x) =

d∏
i=1

p(xi|xpai). (2)

3.2. Score Matching for Causal Discovery

An important class of causal models for continuous data is
additive noise model (ANM, Peters et al., 2014; Hoyer et al.,
2008) where the graph G can be uniquely identifiable. In
ANMs, (1) takes the form Xi := fi

(
Xpai) + ϵi, i ∈ [d].

SCORE (Rolland et al., 2022) is the pioneering work
that sheds light on the connection between score func-
tion and causal discovery. Assuming the model is a non-
linear ANM with Gaussian noise (i.e., the noise variables
ϵi ∼ N (0, σ2

i )), the authors show that the causal ordering
of the DAG G can be recovered from the score function
∇ log p(x).

Given the Markovian factorization in (2), the joint log den-
sity under this model can be written as

log p(x) =

d∑
i=1

log p(xi|xpai)

= −1

2

d∑
i=1

(
xi − fi(xpai)

σi

)2

− 1

2

d∑
i=1

log(2πσ2
i ).

Thus, the score function s(x) := ∇ log p(x) reads

sj(x) = −
xj − fj(xpaj )

σ2
j

+
∑
i∈chj

∂fi
∂xj

(pai)
xi − fi(xpai)

σ2
i

.

It is observed that if j is a leaf node, then the second sum-
mand vanishes due to having no children. This gives rise
to ∂jsj(x) :=

∂sj(x)
∂xj

= −1/σ2
j , thus VarX [∂xj

sj(x)] = 0.
Rolland et al. (2022) shows that this condition is sufficient
to identify a leaf of the graph.
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Ordering-based Causal Discovery from Discrete Data

The algorithm initially estimates the Jacobian of the score
for all data points and then selects as a leaf node the diago-
nal element that yields the smallest variance over the data.
The column corresponding to the selected leaf node is then
removed from the data matrix, and the process is repeated
until the entire ordering is determined. If the Hessian matrix
is accurately estimated, a true causal order can be identified.
Thereafter, the authors propose to apply CAM (Bühlmann
et al., 2014) for eliminating spurious edges from the super
DAG to recover the true graph.

SCORE nonetheless cannot distinguish leaf nodes in linear
causal models, where the diagonal values of the score’s Ja-
cobian is constant for any nodes. Utilizing this fact, Xu et al.
(2024) proposes an alternative leaf discriminant criterion
applicable to both linear and non-linear relations, where the
outer variance is replaced with expectation. A sufficient
condition for identifiability is that the noise variances are
non-decreasing, restated as follows:

Assumption 3.1. (Non-decreasing variance of noises) (Xu
et al., 2024) For any two noises ϵi and ϵj , σi ≤ σj if
πi < πj .

The non-decreasing variance condition extends the standard
equal variance assumption in previous literature e.g., Peters
& Bühlmann (2014); Ghoshal & Honorio (2018) and can be
regarded as a representation of prior knowledge about the
uncertainty inherent in the system.

3.3. Generalized Score Matching

In this section, we briefly describe the generalized score
matching principle proposed in Lyu (2012). We note that
despite the conceptual similarities, this generalized “ver-
sion” of score function departs from the diffusion setup of
concrete score matching. We later show how the following
generalization facilitates the identification of a topological
order of G from discrete data.

Given two probability densities p(x) and q(x) and a linear
operator (functional) L, the generalized Fisher divergence
is defined as

DL(p∥q) =
∑
X

p(x)

∣∣∣∣∣Lp(x)p(x)
− Lq(x)

q(x)

∣∣∣∣∣
2

, (3)

where Lp(x)
p(x) is termed as generalized score function. A

valid linear operator L should be complete, meaning that
two densities p(x) = q(x) (a.e) if p(x) and q(x) satisfies
Lp(x)
p(x) = Lq(x)

q(x) (a.e). It is easy to see that the gradient
operator ∇ is complete, under which DL reduces to the
original Fisher divergence, since∇ log p(x) = ∇p(x)

p(x) .

For discrete data, Lyu (2012) proposes to choose L to be
the marginalization operatorM. LetMip(x) := p(x−i) =

∑
xi
p(x) be the marginal density induced from p(x), where

x−i denote the vector formed by dropping xi from x. This
gives rise to

Mip(x)

p(x)
=

p(x−i)

p(x)
=

1

p(xi|x−i)
. (4)

The discrete score function is thus defined asMp(x) :=

[Mip(x)]
d
i=1 where each Mip(x) is a reciprocal of the

singleton conditional density p(xi|x−i).

The operatorM is complete due to a well-known result in
statistics (Brook, 1964; Lyu, 2012) that the joint density p(x)
is completely determined by the ensemble of the singleton
conditionals p(xi|x−i),∀i ∈ [d].

It can be seen that the normalizing constant does not affect
the computation as it gets cancelled out in the generalized
score function. The generalized Fisher divergence can also
be re-expressed into a form as an expectation of functions
of the unnormalized model, which enables Monte Carlo
sampling for estimation. It is worth noting that the above
construction is also applicable to continuous data where the
summation is replaced with integration.

4. Ordering-based Causal Discovery via
Discrete Score Matching

From this point we will mainly deal with the singleton
conditional densities p(xi|x−i), which are referred to as the
reciprocal discrete score functions.

Our task is to identify a criterion to discriminate leaf nodes
of a causal graph from i.i.d observational samples. Mo-
tivated by the non-decreasing variance condition (Park,
2020; Xu et al., 2024), we investigate whether the knowl-
edge of the system’s uncertainty can facilitate the identifica-
tion of the leaf variables in a discrete SCM.

Translation of the non-decreasing variance condition to dis-
crete variables, particular categorical ones, is however not
straightforward, as they lack inherent quantitative values
that can directly reflect the system’s uncertainty. As revealed
shortly, there fortunately exists a broad class of randomness
measures of discrete probability distributions that only deals
with the probabilities rather than the values on the associated
sample space. Building on this construction, we develop a
generalized framework for characterizing the system’s ran-
domness. This framework plays a crucial role in identifying
the leaf variable with the reciprocal discrete score function.

Let P denote a class of all discrete probability vectors. With
no loss of generality we assume that all the probabilities dis-
tributions we deal with have been ordered in non-increasing
order. We also assume the vectors have an equal length of
n = max(n1, · · · , nd) by properly padding the shorter one
with the appropriate number of 0’s at the end.

4
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Ordering-based Causal Discovery from Discrete Data

Definition 4.1. Given two probability distributions a =
(a1, · · · , an) and b = (b1, · · · , bn) with a1 ≥ · · · an ≥ 0
and b1 ≥ · · · bn ≥ 0, we say that a majorizes b, written as
a ⪰ b, if and only if

k∑
i=1

ai ≥
k∑

i=1

bi, for all k = 1, · · · , n.

Hickey (1982; 1983) formalizes the randomness or spread-
ness of a discrete probability distribution via majorization
theory (Marshall et al., 1979). For two discrete distributions
a and b, we say a is more spread or more uniform/random
than b if a ⪯ b. A function ϕ : Rn 7→ R is a Schur-concave
function if ϕ(a) ≤ ϕ(a) for all vectors a,b ∈ Rn such
that a ⪰ b. An interesting fact is the uniform vector i.e.,
( 1n , · · · ,

1
n ) is majorized by all probability vectors (thus be-

ing most random) and a degenerate vector e.g., (1, 0, · · · 0)
and its permutations majorize all other vectors (thus being
least random). These properties motivate the construction a
measure of randomness as follows:
Definition 4.2. (Hickey, 1982) A real-valued continuous
function ϕ, taking finite values in P is a measure of ran-
domness if it is symmetric and concave, and the concavity
being strict on the sub-class of distribution finite number of
positive probabilities.

A popular class of measures of randomness has the form:

ϕ(p) =

n∑
k=1

g (pk) , (5)

where g : R 7→ R is continuous, strictly concave with
g(0) = 0. The entropy function is one of the best-known
measures of the above form, where g(pk) = −pk log pk.

We are now ready to state our identifiability results. First,
we need the following assumption to ensure the singleton
conditional densities are defined.
Assumption 4.3. Let x ∈ X be a discrete random vector
defined by an SCM (1). For any node i ∈ [d], the conditional
densities p(xi|xpai) are non-zero ∀x ∈ X .

The assumption also implies the conditional densities are
non-degenerate for all variables. With a slight abuse of
notation, let ϕ(X) denote the randomness, under ϕ, in
the probability vector of the distribution of X . Let X
and Y be joint distributed discrete random variables. The
conditional information about X given Y is defined as
ϕ(X|Y ) = EY [ϕ(X|y)], accordingly in the probability
vector p(X|y) for a given value y.
Definition 4.4. (Non-decreasing randomness) Given a valid
topological ordering π of the true graph G and a measure
of randomness ϕ as defined in (4.2), ϕ is said to satisfy
non-decreasing randomness if for any two nodes i, j ∈ [d]
such that πi < πj , one has ϕ(Xi|Xpai) ≤ ϕ(Xj |Xpaj ).

The non-decreasing randomness property characterizes
along the causal order the relative uncertainty among lo-
cal densities (representing independent local generative sys-
tems). It indicates that, intuitively, the root nodes should
carry the least randomness as it only depends on the noise
variables. Meanwhile, other variables inherit the uncer-
tainty from both the noises and their parent variables. For
a leaf node particularly, it also indirectly accumulates un-
certainty from the entire system, thus likely to be more
random. One can see that for any pair of nodes i, j such
that πi < πj , if the probability vector p(Xi|xpai) majorizes
p(Xj |xpaj ),∀x ∈ X , the non-decreasing randomness prop-
erty holds for any function ϕ defined in (4.2).
Theorem 4.5. Let x ∈ X be a discrete random vector
defined via an SCM (1), and let ri(x−i) := p(Xi|x−i)
be the reciprocal discrete score function for every node
i ∈ [d]. If there exists a randomness measure ϕ
satisfying the non-decreasing randomness property w.r.t
the true graph G, then Xj is a leaf node ⇔ j =

argmaxi∈[d] EX−i

[
ϕ
(
ri(x−i)

)]
.

We say that the leaf variable Xl is ϕ-identifiable if Theorem
4.5 holds for a certain measure ϕ. In connection with the
previous literature, it is natural to ask whether the (expected
conditional) variance function is applicable. Let us consider
the function Var(p) =

∑n
k=1 pk(log pk − µ)2 with µ =∑n

k=1 pk log pk. It is well-known that the variance function
is convex in the variables. In the presence of symmetry,
convexity implies Schur-convexity. Hence, Var(p) is Schur-
convex, thus its negative, defined as ϕV ar(p) := −Var(p)
is Schur-concave and qualifies as a randomness measure.
The variance function can therefore be used for causal order
search. This result is formalized in the following corollary.
Corollary 4.6. Let x ∈ X be a discrete random vector
defined via an SCM (1), and let ri(x−i) := p(Xi|x−i)
be the reciprocal discrete score function for every node
i ∈ [d]. If ϕV ar satisfying the non-decreasing randomness
property w.r.t the true graph G, then Xj is a leaf node ⇔
j = argmini∈[d] EX−i

[
Var
(
ri(x−i)

)]
.

Corollary 4.6 simply follows from Theorem 4.5 and the
proof is direct from Schur-convexity of the Var(p). Fur-
thermore, one may notice that in additive noise models, the
uncertainty of the system is entirely captured in the noise
variables. In this case, non-decreasing randomness of the
local densities is reduced to non-decreasing randomness
of the corresponding noise variables. If the variance func-
tion is considered as the measure ϕ, our condition (4.4) can
be viewed as a generalization of the equal/non-decreasing
variance of noises introduced in the previous literature.

Let ϕH(p) =
∑k=1

n −pk log pk be the entropy function
and ϕU (p) =

∑k=1
n log pk be the sum of logarithmic prob-

abilities. Let us denote ϕKL(p) = −KL(p∥u)−KL(u∥p),

5
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Ordering-based Causal Discovery from Discrete Data

where u denotes the uniform distribution of appropriate
dimension.

Proposition 4.7. For ϕH and ϕU defined above, if both mea-
sures satisfy the non-decreasing randomness property w.r.t
the true graph G, then the leaf variable Xl is identifiable
from ϕKL(·) as defined above.

If multiple functions ϕ satisfy the non-decreasing random-
ness condition, the leaf variable may also be identifiable
from their linear combination. Proposition 4.7 introduces an
interesting instance. It is clear that ϕKL is non-positive and
achieves the maximum at zero when p is uniform. Higher
ϕKL thus indicates more randomness in a distribution. We
provide the proofs for the above results in Appendix A. We
now empirically verify the proposals in 4.6 and 4.7 through
numerical experiments.

Estimation of Discrete Score Function We employ the
continuous-time discrete diffusion framework proposed in
Sun et al. (2022) to estimate the singleton conditionals. The
framework generalizes the ratio matching objective for bi-
nary variables from Hyvärinen (2007). The objective ele-
gantly circumvents the calculation of the data score function
and its minimizer is shown to be consistent.

As for the parameterization of the score function, Sun et al.
(2022) introduces an efficient Transformer architecture that
only requires O(1) forward evaluations, which is adopted in
our implementation. The model is designed in an amortized
fashion where an entire ensemble of singletons is returned
per input. In our implementation, models are trained with
Adam optimizer (Kingma, 2014) at fixed 300 epochs, 3000
time steps and learning rates of 0.0001. The size of hidden
units is set as 2d where d is the number of variables in
the data (i.e., sequence length). For details on architecture
design, we refer readers to §4.1 and §5.3 in Sun et al. (2022).
We recap the fundamentals of score matching in Appendix
B and the categorical ratio matching objective in Eq. (15).

Remark In terms of the order search alone, the time com-
plexity is linear in the number of nodes. The dominant
factor is the training time of the continuous-time diffusion
model for estimating the discrete score functions. The al-
gorithm involves recursively estimating the score function
from the data where the identified leaf variable is removed.
Consequently, a new model must be trained at every itera-
tion, which unfortunately increases the training time. As
our current work focuses on establishing the identifiability
theory, we leave the exploration of more efficient training
regimes to future research. We summarize our causal order
search procedure in Algorithm 1.

Algorithm 1 Causal Order Search with Discrete SCORE
Input: Data matrix X ∈ [n]N×d and base measure ϕ.
Output: Topological ordering π.
Initialize π = [ ], nodes = {1, · · · , d}
for i = 1, · · · , d do

Estimate the conditionals set
{
p(Xj |x−j)

}
j∈nodes with

a continuous-time diffusion model by Eq. (15).
Estimate Vj = E

[
ϕ
(
p(Xj |x−j)

)]
,∀j ∈ nodes.

Find leaf l← nodes [argmaxj Vj ].
Update π ← [l, π], nodes ← nodes − {l}.
Remove l-the column of X .

end for

5. Experimental Setup
Datasets We evaluate the effectiveness of our proposed
framework on both simulated and real-world datasets. We
generate random DAGs from Erdos-Rényi (ER) or Scale-
Free (SF) with number of nodes d up to 60 nodes and ex-
pected node degrees at 2d (ER2) and 4d (ER4). We use
pgmpy2 library (Ankan & Textor, 2024) to construct a
Bayesian network based on the generated structures and
populate the conditional probability distributions with nor-
malized uniformly random weights. This strategy aims to
create a system of approximately constant randomness, thus
enabling the verification of our identifiability results. The
cardinality of variables runs from 3 to 6, and samples of
10, 000 observations are simulated from the given models.

We additionally experiment with Sachs dataset (Sachs
et al., 2005), a popular benchmark of causal discovery
with the ground-true causal network of protein signalling
pathways. We analyze the preprocessed interventional
dataset3 with 11 categorical features and total of 5400
samples across 6 experimental conditions. For each syn-
thetic setting, we generate 10 random datasets. For every
experiment, we run our models at 10 different initializa-
tions and report the average results. Our codes are anony-
mously published at anonymous.4open.science/r/
discrete-SCORE-C1F3/.

Metrics Rolland et al. (2022) proposes Dtop, a topologi-
cal divergence metric quantifying the number of edges that
cannot be recovered due to the errors in the topological or-
der. For an ordering π and a target adjacency matrix A, the
metric is defined as

Dtop(π,A) =

d∑
j=1

∑
i:πj>πi

Aji.

2pgmpy.org/index.html
3available at bnlearn.com/book-crc/code/sachs.

interventional.txt.gz

6

anonymous.4open.science/r/discrete-SCORE-C1F3/
anonymous.4open.science/r/discrete-SCORE-C1F3/
pgmpy.org/index.html
bnlearn.com/book-crc/code/sachs.interventional.txt.gz
bnlearn.com/book-crc/code/sachs.interventional.txt.gz


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Ordering-based Causal Discovery from Discrete Data

Table 1. Synthetic experiment for ER graphs of 2d degree.

d 5 10 15 20

ER2 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 2.40 0.78 1.50 5.20 0.82 2.00 8.00 0.70 1.50 9.00 0.77 3.00
PC 1.80 0.56 - 6.40 0.50 - 9.40 0.48 - 16.00 0.45 -

SCORE + GAM (Ours) 1.40 0.82 1.50 5.00 0.71 2.00 5.60 0.75 1.50 6.60 0.80 3.00
GAM 0.80 0.64 - 3.80 0.58 - 3.20 0.62 - 4.20 0.62 -

OCD 2.60 0.58 - 8.40 0.42 - 11.60 0.45 - 14.40 0.49 -

Table 2. Synthetic experiment for ER graphs of 2d degree.

d 30 40 50 60

ER2 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 12.80 0.72 5.00 16.60 0.75 3.50 20.20 0.72 12.00 19.20 0.76 6.00
PC 20.40 0.45 - 26.60 0.47 - 31.60 0.48 - 37.60 0.47 -

SCORE + GAM (Ours) 9.00 0.76 5.00 12.80 0.79 3.50 18.00 0.73 12.00 21.40 0.74 6.00
GAM 4.60 0.62 - 8.40 0.61 - 19.20 0.50 - 12.80 0.60 -

OCD 16.00 0.50 - 29.00 0.41 - 23.00 0.52 - 38.00 0.50

Table 3. Synthetic experiment for SF graphs of 2d degree.

d 5 10 15 20

SF2 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 3.00 0.71 0.20 5.00 0.72 0.80 10.60 0.50 3.80 15.60 0.44 4.80
PC 3.20 0.44 - 6.40 0.46 - 13.00 0.40 - 19.80 0.35 -

SCORE + GAM (Ours) 0.60 0.89 0.20 4.80 0.60 0.80 9.20 0.48 3.80 12.80 0.46 4.80
GAM 0.40 0.63 - 4.20 0.51 - 7.40 0.47 - 10.00 0.48 -

OCD 1.80 0.56 - 6.00 0.44 - 10.00 0.40 - 14.00 0.35 -

Table 4. Experiment on Sachs dataset.

d 11

SACHS SHD F1 Dtop

SCORE + PC (Ours) 38.20 0.39 3.80
PC 35.00 0.28 -

SCORE + GAM (Ours) 30.20 0.29 3.80
GAM 29.00 0.25 -

OCD 38.00 0.24 -

If a node j appears after node i in the true ordering, i.e.,
πj > πi, the edge j → i must not exist. Dtop(π,A) re-
turns zero if π is a correct order. As a result, the inferred

partial order introduces the forbidden links from a node
to its preceding nodes, which can be used to impose con-
straints on DAG search algorithms. Hence, the quality of
the estimated order can be further assessed by how well the
provided knowledge from the ordering can improve causal
discovery baselines. For comparing the estimated DAG with
the ground-truth one, we report the commonly used met-
rics: F1 score and Structural Hamming Distance (SHD). F1
score measures the balances between precision and recall,
while SHD counts the smallest number of edge additions,
deletions, and reversals required to transform the recovered
DAG into the true one. Dtop is thus a lower bound on the
SHD of the final algorithm. Lower Dtop, SHD (↓) and
higher F1 are desirable (↑).
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Baselines We investigate the representative methods of 3
families of causal discovery approaches for discrete data:
(1) constraint-based methods with the PC algorithm (Spirtes
& Glymour, 1991), (2) OCD (Ni & Mallick, 2022), a recent
score-based algorithm, and (3) generalized additive models
(GAM, Wood, 2017). We report the performance of the
PC algorithm with G-tests (Quine & Robinson, 1985) at
p-value of 0.5, which gives the best results in most of our
experiments. Though designed for ordinal data, OCD (Ni &
Mallick, 2022) is empirically shown to achieve better accu-
racy and scalability than traditional score-based methods in
various real-world settings. We adopt the authors’ proposed
configuration that uses BIC score for greedy search. Lastly,
we explore additive models for variable selection by fitting a
multinomial logistic regression model with factor covariates.
We begin with a fully connected graph and prune redundant
edges based on a cut-off value of 0.0001.

6. Results & Discussion
Tables 1-4 report the results of our experiments in recov-
ering the topological ordering and the true causal graph.
SCORE+X refers to the application of our inferred causal
order on a structure learning baseline X. As shown, our
method is capable of recovering a true causal order with
relatively low errors.

Once a causal order is found, the next step is pruning to
recover the DAG. Methods for continuous data often rely
on regression to identify parent variables, which requires
knowledge of the appropriate model forms. However, our
approach does not assume an additive structure, making it
more general but also more challenging in terms of selecting
suitable pruning methods. As a result, the performance of
DAG recovery inherently depends on the underlying causal
discovery algorithms. Here, our main goal is to assess the
extent to which the inferred causal order can enhance perfor-
mance, rather than to achieve state-of-the-art results. Nev-
ertheless, ordering-based causal discovery offers flexibility,
as it can be applied on top of any existing algorithm.

In our experiments, we consider PC algorithm and GAM
for post-processing as OCD gives sub-optimal performance.
It is crucial to note that because SHD quantifies the number
of errors in absolute value, given a sparse graph, a method
could achieve low SHD by predicting few edges, which
obviously would compromise the accuracy score. Therefore,
one need to examine both SHD and F1 metrics to assess the
causal discovery effectively thoroughly.

Concretely, using the knowledge of an topological order-
ing to prune forbidden edges, given a correct one, both
lower SHD and higher F1 scores are expected. However,
if the inferred causal order is imperfect, this would result
in an increased number of false deletions, increasing SHD.

Therefore, we expect that an effective algorithm should
yield a boost in accuracy (i.e., higher F1 score) with mini-
mal increase in SHD. It can be observed that our algorithm
achieves this goal in nearly all settings, with a significant
improvement in accuracy in the baselines on both simulated
and real-world settings.

It is worth noting that our simulated data process is in fact
quite general, which assumes no precise knowledge of the
base measure. We find that two proposed choices of ours in
Corollary 4.6 and Proposition 4.7 yield the best performance
in the synthetic and real-world experiments respectively.
We have also experimented with other variants, such as ϕU

or entropy function ϕH alone. Though these alternatives
give slightly higher Dtop on average, they exhibit the same
behaviour with a consistent boost in F1 score. Additional
evidence on 4d degree settings are provided in Appendix C.

7. Conclusion
In this work, we have explored the application of discrete
score matching to causal discovery and contributed to the
current score matching literature a new identifiability result
to infer causal orders from observational discrete data. One
limitation of the proposed algorithm is that it requires it-
eratively training diffusion models to estimate the discrete
score function, leading to increased computational time.
Future improvements in model design, through potentially
adaptive masking strategies, may enable single-model ap-
proximation of the discrete scores with various data patterns
of missing columns. This could effectively reduce the order
search complexity strictly to O(d).

While the partial knowledge of a topological ordering yields
improvement in accuracy, the DAG learning performance
is still constrained by the quality of estimation of the score
functions as well as the post-processing methods, a persist-
ing challenge of this line of research. Furthermore, as in any
identifiability theory, the non-decreasing randomness condi-
tion necessitates prior knowledge about the data-generating
process, which may be untestable in some cases. Future
research could explore methods to verify these assumptions
and identify appropriate randomness measures in practical
applications.

Impact Statement
This paper presents the use of machine learning to efficiently
solve a class of statistical estimation problems in a scalable
way. Although we are not aware of any immediate nega-
tive societal effects of our approach, machine learning often
leads to unforeseen consequences across different fields.
Therefore, it is important to carefully assess both the poten-
tial benefits and risks to society when applying the proposed
method in practical settings.
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A. Proof
Theorem 4.5. Let x ∈ X be a discrete random vector defined via an SCM (1), and let ri(x−i) := p(Xi|x−i) be the
reciprocal discrete score function for every node i ∈ [d]. If there exists a randomness measure ϕ satisfying the non-decreasing

randomness property w.r.t the true graph G, then Xj is a leaf node ⇔ j = argmaxi∈[d] EX−i

[
ϕ
(
ri(x−i)

)]
.

Proof. A measure ϕ as defined in (4.2) is a valid measure of randomness in the sense that it satisfies the conditional
information property: if X and Y are discrete random variables defined on a finite sample space, the expected randomness
remaining in X after Y has been observed is less than or equal to the marginal randomness of X with equality if and only
X and Y are independent (Hickey, 1982). Formally, it reads

ϕ(X|Y ) ≤ ϕ(X). (6)

It is easy to see that this appealing property applies to all measures of the form (5), which is a simple result of the concavity
of ϕ by Jensen’s inequality. We now apply this result to prove our leaf discriminant criterion.

For ease of notation, let pi(xpai) = p(Xi|xpai) and ri(x−i) = p(Xi|x−i) for any node i.

We first prove the “⇒ ” direction.

With no loss of generality, we assume that there is only one leaf node.

Suppose l is the leaf node, we have p(xl|x−l) = p(xl|xpal). Hence

EX−l

[
ϕ(rl)

]
= EX−l

[
ϕ(pl)

]
= ϕ(Xl|Xpal). (7)

For any non-leaf i, we have

EX−i

[
ϕ(ri)

]
= ϕ(Xi|X−i) = ϕ(Xi|Xmbi

), (8)

where mbi denotes the Markov blanket of Xi.

Since i is a non-leaf node, πi < πl holds in a causal order π. Applying the properties of conditional information (6) and
non-decreasing randomness (4.4) respectively, we have

ϕ(Xi|Xmbi
) ≤ ϕ(Xi|Xpai) ≤ ϕ(Xl|Xpal). (9)

Since mbi is the minimal set of nodes that renders Xi independent from the other variables and, by Assumption 4.3, no
local density is degenerate, the first inequality is therefore strict.

We conclude that EX−l

[
ϕ(rl)

]
> EX−i

[
ϕ(ri)

]
,∀i ̸= l.

We now prove the “⇐ ” direction.

Suppose there exists a non-leaf node i such that i = argmaxi∈[d] EX−iϕ(ri).

It follows that for any leaf node l, we have

EX−i
ϕ(ri) = ϕ(Xi|Xmbi

) > EX−l
ϕ(rl) = ϕ(Xl|Xpal).

Since ϕ satisfies the non-decreasing randomness property, we have ϕ(Xl|Xpal) ≥ ϕ(Xi|Xpai) since πi < πl.

This leads to ϕ(Xi|Xmbi
) > ϕ(Xi|Xpai), which contradicts the conditional information inequality (6).

Therefore, we must have that ϕ(Xi|Xmbi) ≤ ϕ(Xl|Xpal) and the equality occurs when ϕ(Xi|Xmbi) = ϕ(Xi|Xpai). This
happens if and only if Xi is independent from other nodes given its parents. Then, i must be a leaf node.

Let ϕH(p) := H(p) =
∑k=1

n −pk log pk be the entropy function and ϕU (p) =
∑k=1

n log pk be the sum of log probabilities.
Let us denote ϕKL(p) = −KL(p∥u)−KL(u∥p), where u denotes the uniform distribution of appropriate dimension.

12
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Ordering-based Causal Discovery from Discrete Data

Proposition 4.7 For ϕH and ϕU defined above, if both measures satisfy the non-decreasing randomness property w.r.t the
true graph G, then the leaf variable Xl is identifiable from ϕKL(·) as defined above.

Proof. We have the following derivations:

KL(p∥u) = log n−H(p)

KL(u∥p) = − log n− 1

n

n∑
k=1

log pk

⇒ ϕKL(p) = −KL(p∥u)−KL(u∥p)

= H(p) +
1

n

n∑
k=1

log pk = ϕH(p) +
1

n
ϕU (p).

It suffices to show that ϕKL is a valid randomness measure as defined in (4.2). This is true since ϕKL is the sum of two
Schur-concave functions and a constant, thereby preserving Schur-concavity and satisfying the conditional information
property. That ϕH and ϕU satisfy non-decreasing randomness implies ϕKL also fulfils this property.

Applying Theorem 4.5, one can easily show that if Xl is a leaf variable , then l = argmaxi∈[d] EX−i

[
ϕKL

(
ri(x−i)

)]
,

rendering Xl being identifiable from ϕKL.

B. Score Matching
We begin by presenting a background of score matching. Consider an energy-based model over random vector x ∈ Rd

written as a Gibbs distribution as follows:

pθ(x) =
exp(−Eθ(x))

Zθ
,

where Eθ(x) ≥ 0 is the energy function with parameters θ and Zθ =
∫
exp(−Eθ(x))dx is the partition function

If two continuously differentiable real-valued functions f(x) and g(x) have equal first derivatives everywhere i.e.,∇xf(x) =
∇xg(x), and they are log probability density functions with normalization requirement

∫
exp(fθ(x))dx = exp(fθ(x))dx =

1, then f(x) ≡ g(x).

The first-order gradient function of the log-density function is called the score function of that distribution. The above
property suggests we can learn the model θ by matching its score function with the score of the data distribution. The score
matching objective minimizes the Fisher divergence between two distributions

DF

[
pdata(x)∥pθ(x)

]
= Epdata(x)

[
1

2
∥∇x log pdata(x)−∇x log pθ(x)∥22

]
. (10)

For the second term, we can parametrize a neural network sθ(x) ≜ ∇x log pθ(x) to approximate the score function. This
can helps us ignore the intractable normalizing constant Zθ. However, the first term ∇x log pdata(x) is intractable since it
requires the knowledge of the data density.

B.1. Basic Score Matching

Under certain regularity conditions, Hyvärinen & Dayan (2005) establishes an objective that avoids computing
∇x log pdata(x). With integration by parts, the Fisher divergence can be rewritten as

DF

[
pdata(x)∥pθ(x)

]
= Epdata(x)

[
1

2

d∑
i=1

(
∂Eθ(x)

∂xi

)2

+
∂2Eθ(x)

(∂xi)2

]
+ const,

= Epdata(x)

[
1

2
∥sθ(x)∥2 +Tr (Jxsθ(x))

]
+ const, (11)

13
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Ordering-based Causal Discovery from Discrete Data

where Jxsθ(x) is the Jacobian of the score function. The estimator under objective (11) is consistent. However, it takes
O(d2) time to compute the trace of the Jacobian.

B.2. Denoising Score Matching

Vincent (2011) proposes a denoising score matching objective that can completely avoid both the unknown term pdata(x)
and computationally expensive second-order derivatives. This is done by adding a bit of noise to each data point: x̃ = x+ ϵ
where the noise distribution p(ϵ) is smooth. Let p(x̃) =

∫
p(x̃|x)pdata(x)dx denote the noisy data distribution.

DF

[
p(x̃)∥pθ(x̃)

]
= Ep(x̃)

[
1

2

∥∥∥∇x log p(x̃)−∇x log pθ(x̃)
∥∥∥2
2

]
= Ep(x,x̃)

[
1

2

∥∥∥∇x log p(x̃|x)−∇x log pθ(x̃)
∥∥∥2
2

]
+ const. (12)

Vincent (2011) proves that minimizing (12) is equivalent to minimizing the explicit score matching objective (10). Denoising
score matching however is not a consistent objective. The inconsistency becomes non-negligible when q(x̃) significantly
differs from pdata(x). Furthermore, if we use small noise perturbation, this often significantly increase the variance of
objective (Murphy, 2023).

B.3. Multi-scale Denoising Score Matching

Another issue is that score matching can have difficulty in recovering the true distribution when there are regions of low data
density that are highly disconnected. Song & Ermon (2019) proposes to overcome the difficulties by perturbing the data
with different scales of noise. Consider a sequence of positive noise scales αmin = α1 < α2 < · · · < αT = αmax, for each
data point x ∼ pdata(x), a discrete Markov chain {x0 = x, x1, · · · , xt} is constructed such that pαt(xt|x) = N (xt|x, αtI)
and the marginal distribution is given by pαt(xt) =

∫
pαt(xt|x)pdata(x)dx.

The noise scales are prescribed such that αmin is small enough for pαmin ≈ pdata(x) and αmax is large enough for xT to be
approximately distributed according to N (0, I). Then we seek to minimize the expected of Fisher divergences between
pαt(xt) and pθ(x

t) as follows:

∫ T

0

αt Epαt (x,xt)

[
1

2

∥∥∥∇xt log pαt(xt|x)−∇xt log pθ(x
t)
∥∥∥2
2

]
dt. (13)

As in basic score matching, we can model∇xt log pθ(x
t) with a time-dependent neural network sθ(x

t, t).

B.4. Continuous-Time Discrete Score Matching

Consider a finite discrete state spaceX , Sun et al. (2022) model a continuous-time Markov chain forward process {Xt}t∈[0,T ]

with the transition probability characterized by rate matrices Qt ∈ R|X |×|X|. If the forward process starts at the target
distribution q0 = pdata(x), the marginal time t is given by qt(xt) =

∫
qt(xt|x)pdata(x)dx.

To estimate the discrete score function (4) is essentially to learn, from observed i.i.d samples, the set of the singleton
conditional distributions

{
p(Xi|x−i)

}
i∈[d]

:=
{
q0(Xi|x−i)

}
i∈[d]

.

In a similar setup with the multi-scale denoising framework, we match the qt(Xi|x−i) with a time-dependent neural network
ptθ(Xi|x−i) by minimizing the weighted sum cross entropy along the forward process as

∫ T

0

Eqt(xt)

[
d∑

i=1

(
−
∑
xi

qt(X
t
i = xi|xt

−i) log p
t
θ(X

t
i = xi|xt

−i)

)]
dt. (14)

One can notice the bottleneck lies in the intractable term qt(X
t
i = xi|xt

−i). Fortunately, using the factorization property of
conditional distribution, we can simplify the above objective as
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∫ T

0

Eqt(xt)

[
d∑

i=1

(
−
∑
xi

log ptθ(X
t
i = xi|xt

−i)

)]
dt. (15)

See Appendix B.4 (Sun et al., 2022) for the full derivation. We minimize objective (15) to train the discrete score models of
interest. We follow the authors’ suggested sub-rate transition matrix Qt

i = Qβ(t) where Q = 11T − niI is the uniform
base rate and β(t) is the time schedule function.

C. Additional Experiments
We present additional experiments of graphs of 4d degree. We encounter a memory explosion issue in the data generation
process as SF graphs tend to be concentrated on high-degree nodes. The experiments on SF graphs are conducted up to 20
nodes due to our memory constraints.

Table 5. Synthetic experiment for ER graphs of 4d degree.

d 5 10 15 20

ER4 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 0.20 0.98 0.50 9.80 0.71 3.00 13.60 0.72 1.00 21.20 0.67 5.50
PC 0.00 0.67 - 8.60 0.52 - 15.00 0.49 - 20.20 0.50 -

SCORE + GAM (Ours) 2.80 0.82 0.50 8.60 0.68 3.00 13.75 0.69 1.00 19.20 0.65 5.50
GAM 2.60 0.60 - 6.60 0.57 - 15.60 0.43 - 15.80 0.54 -

OCD 5.80 0.50 - 15.60 0.28 - 20.40 0.43 - 29.00 0.38 -

Table 6. Synthetic experiment for ER graphs of 4d degree.

d 30 40 50 60

ER4 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 35.80 0.58 14.20 42.60 0.63 10.50 53.00 0.59 13.50 69.40 0.60 18.00
PC 28.00 0.52 - 43.00 0.49 - 50.20 0.49 - 66.80 0.49 -

SCORE + GAM (Ours) 35.20 0.56 14.20 44.20 0.60 10.50 53.40 0.57 13.50 69.40 0.59 18.00
GAM 27.40 0.53 - 38.00 0.52 - 42.00 0.53 - 55.60 0.53 -

OCD 47.00 0.34 - 61.20 0.36 - 69.00 0.35 - 70.00 0.40 -

Table 7. Synthetic experiment for SF graphs of 4d degrees.

d 5 10 15 20

SF4 SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop SHD F1 Dtop

SCORE + PC (Ours) 2.60 0.81 0.40 12.20 0.51 1.60 21.60 0.46 2.00 30.80 0.44 5.40
PC 2.40 0.54 - 10.80 0.45 - 24.00 0.34 - 27.20 0.41 -

SCORE + GAM (Ours) 1.80 0.83 0.40 12.40 0.40 1.60 19.00 0.44 2.00 29.00 0.35 5.40
GAM 1.40 0.61 - 11.40 0.39 - 19.00 0.35 - 27.00 0.34 -

OCD 4.80 0.40 - 13.80 0.29 - 23.40 0.22 - 32.20 0.22 -
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